
Introduction to Algorithms
and Programming

Syrian Private University

Instructor: Dr. Mouhib Alnoukari

Introduction to Algorithms
& C Programming

Course focus, First Program, and C Programming

• This is an intro to problem solving and
programming class (that uses the C
programming language).

• The main focus is on:
• Problem solving
• The logic of programming
• Program design, implementation, and

testing
• The fundamentals of programming

Focus of the Course

Book: Let Us C - Yashwant Kanetkar

• Learning how to program takes a lot of time!
• It also requires a lot of patience.
• You cannot learn how to program by just reading

the textbook. You have to spend long hours in
front of the computer.

• If you want to learn how to program well you will
have to take at least 2-3 other programming
classes as well. This class alone is not enough!

• This class is not exclusively about writing code. It
also emphasizes Problem Solving.

Notes …

? Hardware & Software

Hardware & Software

• Hardware

– Physical, tangible parts of a computer.

– Keyboard, monitor, disks, wires, chips, etc.

• Software

– Programs and data (intangible).

– A program is a series of instructions.

• A computer requires both hardware and software.

• Each is essentially useless without the other.

Software Categories

• Operating System
– controls all machine activities.

– provides the user interface to the computer.

– manages resources such as the CPU and memory.

– Windows XP, Unix, Linux, Mac OS.

• Application program
– generic term for any other kind of software.

– word processors, missile control systems, games.

• Most operating systems and application programs have
a graphical user interface (GUI).

Computer Components

CPU & Main Memory

Central

Processing

Unit

Main

Memory

Chip that executes

program commands

Primary storage area for

programs and data that

are in active use

Synonymous with RAM

RAM is volatile memory

Start-up instructions are

burnt into ROM

Memory

Most modern computers are byte-addressable

Digital Information

• Computers store all information digitally:

– numbers

– text

– graphics and images

– video

– audio

– program instructions

• In some way, all information is digitized - broken down
into pieces and represented as numbers

Representing Text Digitally

• For example, every character is stored as a number,
including spaces, digits, and punctuation

• Corresponding upper and lower case letters are
separate characters

H i , H e a t h e r .

72 105 44 32 72 101 97 116 104 101 114 46

Binary Numbers

• Once information is digitized, it is represented and
stored in memory using the binary number system

• A single binary digit (0 or 1) is called a bit

• Devices that store and move information are cheaper
and more reliable if they have to represent only two
states

• A single bit can represent two possible states, like a
light bulb that is either on (1) or off (0)

• Permutations of bits are used to store values

Central Processing Unit

• A CPU is on a chip called a microprocessor

• It continuously follows the fetch-decode-execute cycle:

fetch

Retrieve an instruction from main memory

decode

Determine what the

instruction is

execute

Carry out the

instruction

Secondary Memory Devices

Central

Processing

Unit

Main

Memory

Floppy Disk

Hard Disk

Secondary memory

devices provide

long-term storage

Information is moved

between main memory

and secondary memory

as needed

Hard disks

Floppy disks

ZIP disks

Writable CDs

Writable DVDs

Tapes

Input / Output Devices

Central

Processing

Unit

Main

Memory

Floppy Disk

Hard Disk

Monitor

Keyboard

I/O devices facilitate

user interaction

Monitor screen

Keyboard

Mouse

Joystick

Bar code scanner

Touch screen

Flow of Information During Program Execution

? Program Development

Program Development

• The mechanics of developing a program include
several activities:

– Writing the program in a specific programming language.

– Translating the program into a form that the computer can
execute.

– Investigating and fixing various types of errors that can
occur.

• Software tools can be used to help with all parts of
this process.

Entering, Translating, and Running
a High-Level Language Program

Basics Program Development

errors

errors

Edit and

save program

Compile program

Execute program and

evaluate results

Programming Languages

• Each type of CPU executes only a particular machine
language.

• A program must be translated into machine language
before it can be executed.

• A compiler is a software tool which translates source
code into a specific target language.

• Often, that target language is the machine language
for a particular CPU type.

? Your First Program!

Using C Programming Language

• A programming language specifies the
words and symbols that we can use to
write a program.

• A programming language employs a set of
rules that dictate how the words and
symbols can be put together to form valid
program statements.

C Programming Language

The computer will always do what you tell it to do, not what you want it to do.

C Program Structure

main()

{

}

#include <stdio.h>

// comments about the program

printf(“Hello World! \n”);

C Program Structure

main()

{

}

#include <stdio.h>

All programs must have a main function

C Program Structure

main()

{

}

#include <stdio.h>

main function body

Comments can be placed almost anywhere

? C Language

Using C Programming Language

 C evolved from two previous languages, BCPL (Basic Combined Programming
Language) and B.

 BCPL developed in 1967 by Martin Richards as a language for writing OSes and
compilers.

 Ken Thompson modeled many features in his language, B, after their
counterparts in BCPL, and used B to create an early versions of UNIX operating
system at bell Laboratories in 1970 on a DEC PDP-7 computer.

 Both BCPL and B were typeless languages: the only data type is machine word
and access to other kinds of objects is by special operators or function calls.

 The C language developed from B by Dennis Ritchie at Bell Laboratories and
was originally implemented on a DEC PDP-11 computer in 1972.

 It was named C for new language (after B).
 Initially, C used widely as the development language of the UNIX OS.
 Today, almost all new major OS are written in C including Windows.

C History

http://cm.bell-labs.com/who/dmr/bcpl.html
http://cm.bell-labs.com/who/dmr/bcpl.html
http://cm.bell-labs.com/cm/cs/who/dmr/kbman.html
http://www.cl.cam.ac.uk/~mr10/
http://plan9.bell-labs.com/who/ken/index.html
http://www.soemtron.org/pdp7.html
http://www.soemtron.org/pdp7.html
http://www.soemtron.org/pdp7.html
http://plan9.bell-labs.com/who/dmr/index.html
http://www.pdp11.org/
http://www.pdp11.org/
http://www.pdp11.org/

C Program Structure – Identifiers

1. Is a unique name that simply references to memory locations, which can hold
values (data).

2. Identifiers give unique names to various objects in a program.

3. Are formed by combining letters (both upper and lowercase), digits (0–9) and
underscore (_).

4. Rules for identifier naming are:

a) The first character of an identifier must be a letter (non-digit) including
underscore (_).

b) The blank or white space character is not permitted in an identifier. Space,
tab, linefeed, carriage-return, formfeed, vertical-tab, and newline
characters are "white-space characters“ - they serve the same purpose as
the spaces between words and lines on a printed page.

c) Can be any length but implementation dependent.

d) Reserved words/keywords cannot be used.

C Program Structure – Identifiers

Examples: variable names

C Program Structure – Variables

 are named blocks of memory & is any valid
identifier.

 Have two properties in syntax: name — a unique
identifier & type — what kind of value is stored.

 It is identifier, that value may change during the
program execution.

 Every variable stored in the computer’s memory
has a name, a value and a type.

C Program Structure – Variables

 More examples

C Program Structure – Assignment

• An assignment statement changes the value of a
variable.

• The assignment operator is the = sign

• The expression on the right is evaluated and the
result is stored in the variable on the left.

• The value that was in total is overwritten.

• You can only assign a value to a variable that is
consistent with the variable's declared type.

total = 55;

C Program Structure – Contants

• A constant is an identifier that is similar to a variable
except that it holds the same value during its entire
existence

• As the name implies, it is constant, not variable

• The compiler will issue an error if you try to change
the value of a constant

• In C, we use the const modifier to declare a
constant

const int MIN_HEIGHT = 69;

C Program Structure – Contants

• Constants are useful for three important reasons:

1. First, they give meaning to otherwise unclear literal values.

– For example, MAX_LOAD means more than the literal 250

2. Second, they facilitate program maintenance.

– If a constant is used in multiple places, its value need only be
updated in one place

3. Third, they formally establish that a value should not
change, avoiding inadvertent errors by other programmers.

C Program Structure – Keywords

 Reserved words in C & are not available for re-
definition.

 have special meaning in C.

auto

break

case

char

const

continue

default

do

double

else

enum

extern

float

for

goto

if

inline (C99

beyond)

int

long

register

restrict (C99

beyond)

return

short

signed

sizeof

static

struct

switch

typedef

union

unsigned

void

volatile

while

_Alignas (C11)

_Alignof (C11)

_Atomic (C11)

_Bool (C99 beyond)

_Complex (C99 beyond)

_Generic (C11)

_Imaginary (C99

beyond)

_Noreturn (C11)

_Static_assert (C11)

_Thread_local (C11)

C Program Structure – Others

• Statements are terminated with a ';'

• e.g:

char acharacter;

int i, j = 18, k = -20;

printf("Initially, given j = 18 and k = -20\n");

for(; count != 0; count = count - 1)

C Program Structure – Others

 Group of statements (compound statement) are
enclosed by curly braces: { and }.

 Mark the start and the end of code block.

 Also used in initializing a list of aggregate data values
such as in array and enum type.

#include <stdio.h>

int main()
{

int i, j = 18, k = -20;
printf("Initially, given j = 18 and k = -20\n");
printf("Do some operations..."

"i = j / 12, j = k / 18 and k = k / 4\n");
i = j / 12;
j = k / 8;
k = k / 4;
printf("At the end of the operations...\n");
printf("i = %d, j = %d and k = %d\n", i, j, k);
return 0;

}

int id[7] = {1, 2, 3, 4, 5, 6, 7};
float x[5] = {5.6, 5.7, 5.8, 5.9, 6.1};
char vowel[6] = {'a', 'e', 'i', 'o', 'u', '\0'};

enum days {Mon, Tue, Wed, Thu, Fri,
Sat, Sun};

C Program Structure - Comments

• Comments in a program are called inline
documentation

• They should be included to explain the
purpose of the program and describe
processing steps

• They do not affect how a program works

• C comments can take two forms:

// this comment runs to

the end of the line

/* this comment runs to the

terminating

symbol, even across line

breaks */

// for printf()

#include <stdio.h>

#include <string.h> // for strcpy_s() and their family

/* main() function, where program

execution starts */

int main()

{

/* declares variable and initializes it*/

int i = 8;

…

C Program Structure – White Apace

• Spaces, blank lines, and tabs are called white space.

• White space is used to separate words and symbols in a program.

• Extra white space is ignored.

• A valid C program can be formatted many ways.

• Programs should be formatted to enhance readability, using consistent
indentation.

#include <stdio.h>

void main(void)

{

int MyAge = 12;

printf("My name is Mr. C. Cplusplus\n");

… }

C Program Structure - Commas

 Commas separate function arguments, list of
variables, aggregate values. e.g.

#include <stdio.h>

int main(int argc, int argv)
{

int i = 77, j, k;
j = i + 1; k = j + 1; i = k + j;
printf("Finally, i = %d\n", i);
printf("... and j = %d\n", j);
printf("... and k = %d\n", k);
return 0;

}

int id[7] = {1, 2, 3, 4, 5, 6, 7};
float x[5] = {5.6, 5.7, 5.8, 5.9, 6.1};
char vowel[6] = {'a', 'e', 'i', 'o', 'u', '\0'};

enum days {Mon, Tue, Wed, Thu, Fri,
Sat, Sun};

? PROGRAM ERRORS
SYNTAX & SEMATIC

Program Errors

• A program can have three types of errors:

1. The compiler will find syntax errors and other basic
problems (compile-time errors)

• If compile-time errors exist, an executable version of the program
is not created

2. A problem can occur during program execution, such as
trying to divide by zero, which causes a program to
terminate abnormally (run-time errors)

3. A program may run, but produce incorrect results, perhaps
using an incorrect formula (logical errors)

Programming: Syntax & Semantics

• The syntax rules of a language define how we can put
together symbols, reserved words, and identifiers to
make a valid program.

• The semantics of a program statement define what
that statement means (its purpose or role in a
program).

• A program that is syntactically correct is not
necessarily logically (semantically) correct.

Programming: Syntax & Semantics

 e.g.

 Pseudocode - an informal high-level description of the

operating principle of a computer program or other algorithm.

 Uses the structural conventions of a programming language,

but is intended for human reading rather than machine

reading.

To add an integer to a variable q and store the result in q

(semantic), syntaxically (correct), we can write:

q = q + 3; or q += 3;

? PSEUDOCODE &

ALGORITHM

An informal high-level description of a computer program
or algorithm operating principle.
An algorithm is merely the sequence of steps taken to
solve a problem which are normally a sequence, selection,
iteration and a case-type statement.
Algorithm is a procedure for solving a problem - actions to
be executed and the order in which those actions are to be
executed.
e.g. to sort ascendingly, the given unsorted integers, we
can achieve this by using several different algorithms.
Every algorithm may have different number line of code,
different repetition loops, different execution speeds etc.

PSEUDOCODE & ALGORITHM

But all the program have similar
purpose: to sort the given unsorted
integers in ascending order.
Pseudocode uses programming
language’s structural conventions ,
intended for human rather than machine
reading.
helps programmers develop algorithms.

PSEUDOCODE & ALGORITHM

PSEUDOCODE & ALGORITHM

Set sum to zero

Set grade counter to one

While grade counter is less than or equal to ten

Input the next grade

Add the grade into the sum

Set the class average to the sum divided by ten

Print the class average.

IF HoursWorked > NormalMax THEN

Display overtime message

ELSE

Display regular time message

ENDIF

SET total to zero

REPEAT

READ Temperature

IF Temperature > Freezing THEN
INCREMENT total

END IF

UNTIL Temperature < zero
Print total

